

AI and Intelligent Automation
 pag. 1

HCL Universal Orchestrator 2.1

 Portal Order processing Demo Pack

Scenario 2

The Scheduler’s perspective

Workload Automation Technical advisor’s team

AI and Intelligent Automation
 pag. 2

Table of Contents

1. Scene 1: Cover ... 3

2. Understand the Workflow .. 4

AI and Intelligent Automation
 pag. 3

1. Scene 1: Cover

Welcome to HCL Universal Orchestrator.

Your mission, as a Scheduler, is to Model end-to-end processes and interconnect business flows from multiple API

endpoints. Performing this demo you will learn how to create different Task types, receive data from multiple API

endpoints and filter the exact piece of information you need. You will also be able to move the data you got

around, between the tasks.

Steps:

1. Once your solution is deployed, access to the solution console using the credentials from Active Sandboxes

pages as listed on Scenario 1.

2. Open the Design view from UnO 2.1 UI.

Figure 1 Open Design view

3. Open the ORDER_PROCESS Workflow created on scenario 1 while drag ‘n drop the Workflow into the

canvas.

Figure 2 ORDER_PROCESS Workflow

AI and Intelligent Automation
 pag. 4

2. Understand the Workflow

The below picture shows the entire Workflow, we will go through each step which has no code nor scripts to

manipulate data or conditions.

Figure 3 ORDER_PROCESS Workflow

AI and Intelligent Automation
 pag. 5

Because the Task inside the Workflow are not actually embedded inside this demo flow, you have to show the properties

of the Task while selecting and editing themselves.

1. Task: GET_NEW_ORDER

For showing the first Task GET_NEW_Order drop down the “Task template” and select the three dots beside the Task

GET_NEW_ORDER and click “Edit”and find the properties on the right side of the canvas (for any other Task it’s the

same).

Figure 4 Edit GET_NEW_ORDER Task

Inside the “Action” area you see that we perform a GET on:

http://${var.HOST}:3030/v1/orders/last

To view the corresponding result & output of this Task, you have to select the Monitor view, click the successful executed

Workflow and then the “Task” option inside the toolbar of the execution table.

Hint: you can also select “Task” inside the drop down menu on the upper left side to navigate directly to all executed

Tasks.

AI and Intelligent Automation
 pag. 6

Figure 4 Selecting ORDER_PROCESS Workflow to open corresponding Tasks

For opening the job log select the first Task GET_NEW_ORDER and click the “Job log” option:

Figure 4 Selecting ORDER_PROCESS Workflow to open corresponding Tasks

After scrolling down inside the Task log details you find the following output:

{

 "id": 12345,

 "customerId": 321,

 "name": "John",

 "items": [

 {"id": 123, "description": "Shoes", "qt": 2, "price": 199.99},

 {"id": 234, "description": "Hat", "qt": 3, "price": 49.99}

]

 }

AI and Intelligent Automation
 pag. 7

2. Task: START_ORDER_PROCESS

Will perform a POST:

http://${var.HOST}:3030/v1/orders/update?id=${jobs.GET_NEW_ORDER.JSONResult.id}

3. Task: GET_CUSTOMER_HISTORY

Perform a GET on inside Task:

http://${var.HOST}:3030/v1/customer?id=${jobs.GET_NEW_ORDER.JSONResult.customerId}

Output Body inside result (job log):

{

 "customerId": 321,

 "name": "John",

 "lastMonthOrders": 10,

 "lastWeekOrders": 5,

 "payingIssues": 0,

 "maxPastOrder": 300

}

Corresponding JSONata functions:

 $this().JSONResult.(

 $sum($$.jobs.GET_NEW_ORDER.JSONResult.items.(qt * price)) < maxPastOrder*2

 and lastMonthOrders>0

 and lastWeekOrders<30

 and payingIssues=0)=false

AI and Intelligent Automation
 pag. 8

4. Task: GET_INVENTORY

Perform a POST on endpoint:

 http://${var.HOST}:3030/v1/inventory

With Body (inside job log):

 ${J:jobs.GET_NEW_ORDER.JSONResult.items.{'id':id, 'description': description, 'qt':qt}}

 [

 {"id": 123, "description": "Shoes", "qt": 2},

 {"id": 234, "description": "Hat", "qt": 3}

]

Will produce a result (inside job log) such as:

 {

 "available": true,

 "details": [

 {"id": 123, "description": "Shoes", "qt": 21},

 {"id": 234, "description": "Hat", "qt": 32}

]

 }

There is also a conditional dependency associated with the Task:

 $not($this().JSONResult.available)

AI and Intelligent Automation
 pag. 9

5. Task: PROCESS_ORDER

Will perform POST on:

http://${var.HOST}:3030/v1/orders/process

With the Body:

${J:(

 $lo:=jobs.GET_NEW_ORDER.JSONResult;

 $inv:=jobs.GET_INVENTORY.JSONResult;

 $v:=jobs.FIND_EXTERNAL_VENDORS.JSONResult;

 {

 'order': $lo,

 'total': $sum($lo.items.(qt*price)),

 'internal': $inv.available,

 'vendor': ($inv.available ? {} : $sort($v, function($l, $r) {$l.total > $r.total})[0])

 }

)}

Will produce a result such as:

{

 "order": {

 "id": 12345,

 "customerId": 321,

 "name": "John",

 "items": [

 {"id": 123, "description": "Shoes", "qt": 2, "price": 199.99},

 {"id": 234, "description": "Hat", "qt": 3, "price": 49.99}

]

 },

 "total": 549.95,

 "internal": true,

 "vendor": {}

}

